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Abstract. We show that the graded vector space spanned by independent vertex sets of
any claw-free graph is strongly equivariantly log-concave, viewed as a graded permutation
representation of the graph automorphism group. Our proof reduces the problem to the
equivariant hard Lefschetz theorem on the cohomology of a product of projective lines.
Both the result and the proof generalize our previous result on graph matchings. This also
gives a strengthening and a new proof of results of Hamidoune, and Chudnovsky–Seymour.

1. Introduction

A graphG is claw-free if no induced subgraph is the bipartite graphK1,3. An independent
set of a graph G is a set of nonadjacent vertices. The independence sequence of a claw-free
graph is log-concave: for all 1 ≤ k ≤ ℓ, the numbers Ij of independent sets of size j satisfies
that

Ik−1Iℓ+1 ≤ IkIℓ.

First, Hamidoune [Ham90] gave a combinatorial proof of a slightly stronger result than
mere log-concavity. Then, Chudnovsky and Seymour [CS07] proved it by showing that the
generating polynomial has only real roots, which is well-known to impliy log-concavity.

It is often interesting to ask if a certain behavior of a mathematical object respects the
underlying symmetry. The notion of equivariant log-concavity was introduced by Gedeon,
Proudfoot and Young [GPY17] as a natural categorification of logarithmic concavity. Re-
cently, it is used to study various log-concavity behaviors with respect to a natural group
action in the contexts of topology, geometry and combinatorics.

Let Γ be a finite group, a Γ-representation V• is strongly equivariantly log-concave
if for all 1 ≤ k ≤ ℓ,

Vk−1 ⊗ Vℓ+1 ⊆ Vk ⊗ Vℓ

as a Γ-subrepresentation.
We highlight some known equivariantly log-concave graded representations that are of

combinatorial, geometric, and topological interests in the literature:

Theorem 1.1. (A) The V n
• given by the q-binomial coefficients for a fixed n as a

GLn(Fq)-representation is strongly equivariantly log-concave [PXY18, Proposition
6.7].

(B) The rational cohomology H∗(Conf(n,C),Q) of the configuration space of n points
in C as an Sn-representation is strongly equivariantly log-concave for degrees ≤ 14
[MMPR21].
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(C) The rational cohomology H∗(Conf(n,R3),Q) of the configuration space of n points
in C as an Sn-representation is strongly equivariantly log-concave for degrees ≤ 14
[MMPR21].

(D) The V n
• of even degrees of the intersection homology of the complex affine hyper-

toric variety of the root system of sln, viwed as an Sn-representation is strongly
equivariantly log-concave for degrees ≤ 14 [MMPR21].

(E) The V G
• given by matchings in a graph G as an Aut(G)-representation is strongly

equivariantly log-concave [Li22].
(F) The V n

• given by k-subsets in [n] as an Sn-representation is strongly equivariantly
log-concave (as a special case of [Li22]).

The aim of the present paper is to study the equivariant log-concavity of the following
graded representation. Let G be a claw-free graph. Let Ij denote the set of independent
vertex sets of size j. The automorphism Aut(G) naturally acts on all independent vertex
sets, and each Ij is invariant under this action. Define the graded representation of Aut(G)

V G
• =

⊕
j≥0,I∈Ij

CI,

and it admits a grading given by cardinalities.
The primary aim of the paper is to prove the following theorem.

Theorem 1.2. For any claw-free graph G, the graded vector V G
• is strongly equivariantly

log-concave.

Remark 1.3. Our proof uses combinatorics inspired by the work of Kratthenthaler [Kra96]
to reduce the problem to the equivariant hard Lefschetz theorem on a Boolean algebra,
or the cohomology of a product of projective lines, a generalization of the method in the
author’s previous work on graph matchings [Li22]. The result specializes to our previous
result on graph matchings by taking the line graph L(G) of a graph G: The line graph
L(G) of a graph G consists of vertices each for every edge in G and edges each for every
common vertex shared by two edges in G. For example, every cycle graph Cn with n edges
has its line graph isomorphic to itself, and the line graph of K4 is the 1-skeleton of the
hypersimplex ∆(2, 4). A matching on G of size k yields an independent vertex set in L(G)
of size k. Line graphs are claw-free, by construction, but not all claw-free graphs are line
graphs. For example, any complete graph Kn for n > 3 cannot be the line graph of a
graph, but Kn is claw-free.

Remark 1.4. Taking dimensions immediately covers the previous results of Hamidoune,
and Chudnovsky–Seymour, thus giving new proofs to these results.

Remark 1.5. Communicated by Eric Ramos and Nick Proudfoot, the group consisting
of Melody Chan, Chris Eur, Dane Miyata, Nick Proudfoot, Eric Ramos, Lorenzo Vecchi,
Claudia Yun, was studying if the graded Aut(T )-representation of the independence se-
quence of a tree T is strongly equivariantly log-concave. They provided a counterexample,
the star graph with 6 leaves, to disprove the statement. Note that this counterexample is
“claw-ful”, quite the opposite of “claw-free”. Morally speaking, the enigmatic “claw” struc-
ture seems to be an obstruction to the equivariant log-concavity of independence sequence
of a tree, but the lack thereof turns out to be crucial in our proof of Theorem 1.2.
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2. Proof of the main theorem

In this section, we prove the main theorem. The main idea is to construct a family of
Aut(G)-equivariant injections

Vk−1 ⊗ Vℓ+1 ↪→ Vk ⊗ Vℓ

for all 1 ≤ k ≤ ℓ by reducing to the equivariant hard Lefschetz operator on a Boolean
algebra, or the cohomology of a product of projective lines, via the combinatorics of the
independent vertex sets. This method is inspired by Krattenthaler’s combinatorial proof
of the log-concavity of graph matching sequence [Kra96].

Fix a graph G and 1 ≤ k ≤ ℓ, for each pair I, J in Ik−1 × Iℓ+1, consider the induced
subgraph on the symmetric difference of I and J , i.e., (I ∖ J) ∪ (J ∖ I), denoted by GI,J .
The components in GI,J can only be either a path or a cycle, because G is claw-free and
I, J are independent vertex sets. Consider all the components in GI,J that are paths of
even lengths, i.e., paths that contain odd number of vertices in I ∪ J , denoted as CI,J .
(“C” for “chains”.) Color vertices from I with blue, and J with pink. Note that each path
in CI,J has both endpoints color blue or pink. Now we do some counting: Let PI,J resp.
BI,J be the number of pink resp. blue paths in CI,J .

(a) PI,J +BI,J = |CI,J |;
(b) PI,J −BI,J = (ℓ+ 1)− (k − 1) ≥ 2.

From these, we know

2BI,J ≤ BI,J + PI,J − 2 = |CI,J | − 2, and therefore, BI,J ≤ |CI,J |
2

− 1. (1)

Our next step is to decompose each of Vk−1 ⊗ Vℓ+1 and Vk ⊗ Vℓ+1 into a direct sum of
Boolean algebras on certain partitions in Ik−1 × Iℓ+1 and Ik−1 × Iℓ+1.

Definition 2.1. Two pairs (I, J), (I ′, J ′) of independent vertex sets are equivalent if I∪J =
I ′ ∪ J ′ and I resp. J agrees with I ′ resp. J ′ outside of CI,J or CI′,J ′ .

One verifies using arguments in [Li22] that this indeed gives partitions Πk−1,ℓ+1 and Πk,ℓ

on Ik−1 × Iℓ+1 and Ik × Iℓ respectively.
For any part P ∈ Πk−1,ℓ+1 and each pair (I, J) in P , we associate a set of pairs of

independent vertex sets in Ik−1 × Iℓ+1 as follows. For each path in CI,J with endpoints
colored blue, we swap the colors on all the vertices in this path from pink to blue and
from blue to pink. This swapping produces a path in CI,J with endpoints color pink. Now
collect all the blue resp. pink vertices in GI,J and record that as I ′ resp. J ′. Since I ′ resp.
J ′ now has k resp. ℓ vertices, the pair (I ′, J ′) is in Ik × Iℓ. Repeat for every path in CI,J ,
we obtain a subset NI,J in Ik × Iℓ. Using a similar argument as in [Li22, Section 2.2], we
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verify that NI,J is a part of Πk,ℓ, denoted as P ′. Now define a map

Φk,ℓ : Vk−1 ⊗ Vℓ+1 → Vk ⊗ Vℓ, I ⊗ J 7→ 1

|NI,J |
∑

(I′,J ′)∈NI,J

I ′ ⊗ J ′.

Using similar arugment as in [Li22, Section 2.2], one verifies that Φk,ℓ is Aut(G)-equivariant.
To show injectivitity, we consider the following vector space for any part P in Πk−1,ℓ+1

Vk−1,ℓ+1(P ) := SpanF{I ⊗ J | (I, J) ∈ P}.

We now realize Vk−1,ℓ+1(P ) as a categorification of the BP th level of the Boolean lattice
on CP . Consider the map

βP : P →
(
CP

BP

)
, (I, J) 7→ the set of paths with blue endpoints in CI,J .

It is well-defined by the construction of paths of blue endpoints in CP and bijective using
a similar argument in [Li22]. Next, we consider the vector space

VCP ,BP
:= SpanF

{
B | B ∈

(
CP

BP

)}
,

and define

βP : Vk−1,ℓ+1(P ) → VCP ,BP
, I ⊗ J 7→ the set of paths with blue endpoints in CI,J .

It is an isomorphism of vector spaces, because βP is a bijection on the bases.
Then, we do the same procedure for Ik × Iℓ. We define vector spaces Vk,ℓ(P

′), VCP ,BP ′

and the maps βP ′ and βP ′ similar to those for P . Note that, by construction,

BP ′ = BP + 1 and CP ′ = CP .

Finally, for each P in Πk−1,ℓ+1, define the linear map

LP : VCP ,BP
→ VCP ′ ,BP+1, B 7→ 1

|CP | −BP

∑
B⊆B′∈( CP

BP+1)

B′.

Crucially, LP is a hard Leftschetz operator on the Boolean algebra spanned by all subsets of
CP , where the grading is given by cardinality. It is injective for degrees BP ≤ |CP |/2− 1.
This operator and its injectivity on the lower half graded pieces have been studied in
various contexts. We invite the reader to see proofs of various flavors: [Sta80], [Sta83, The
hard Lefschetz theorem], [HW08, Proposition 7], [HMM+13], [Sta13, Theorem 4.7] and
[BHM+20, Theorem 1.1(3)].

By construction, the following diagram commutes:

Vk−1,ℓ+1(P ) VCP ,BP

Vk,ℓ(P
′) VCP ′ ,BP+1.

βP

∼=

Φk,ℓ LP

βP ′

∼=
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Therefore, Φk,ℓ is injective from Vk−1,ℓ+1(P ) to Vk,ℓ(P
′).

Note that by construction,

Vk−1 ⊗ Vℓ+1 =
⊕

P∈Πk−1,ℓ+1

Vk−1,ℓ+1(P ) ∼=
⊕

P∈Πk−1,ℓ+1

VCP ,BP
.

Then the last sentence of the previous paragraph implies that Φk,ℓ is injective on Vk−1⊗Vℓ+1.

References

[BHM+20] Tom Braden, June Huh, Jacob P Matherne, Nicholas Proudfoot, and Botong Wang, Singular
Hodge theory for combinatorial geometries, arXiv preprint arXiv:2010.06088 (2020). ↑4

[CS07] M. Chudnovsky and Paul D. Seymour, The roots of the independence polynomial of a clawfree
graph, J. Comb. Theory, Ser. B 97 (2007), 350–357. ↑1

[GPY17] Katie Gedeon, Nicholas Proudfoot, and Benjamin Young, The equivariant kazhdan–lusztig
polynomial of a matroid, Journal of Combinatorial Theory, Series A 150 (2017), 267–294. ↑1

[Ham90] Yahya Ould Hamidoune, On the numbers of independent k-sets in a claw free graph, Journal
of Combinatorial Theory, Series B 50 (1990), no. 2, 241–244. ↑1

[HMM+13] Tadahito Harima, Toshiaki Maeno, Hideaki Morita, Yasuhide Numata, Akihito Wachi, and
Junzo Watanabe, Lefschetz properties, The lefschetz properties, 2013, pp. 97–140. ↑4

[HW08] Masao Hara and Junzo Watanabe, The determinants of certain matrices arising from the
Boolean lattice, Discrete mathematics 308 (2008), no. 23, 5815–5822. ↑4

[Kra96] C. Krattenthaler, Combinatorial proof of the log-concavity of the sequence of matching num-
bers, Journal of Combinatorial Theory, Series A 74 (May 1996), no. 2, 351–354. ↑2, 3

[Li22] Shiyue Li, Equivariant log-concavity of graph matchings, arXiv preprint arXiv:2202.08828
(2022). ↑2, 3, 4

[MMPR21] Jacob P Matherne, Dane Miyata, Nicholas Proudfoot, and Eric Ramos, Equivariant log con-
cavity and representation stability, arXiv preprint arXiv:2104.00715 (2021). ↑1, 2

[PXY18] Nicholas Proudfoot, Yuan Xu, and Benjamin Young, The Z-polynomial of a matroid, Electronic
Journal of Combinatorics 25 (2018), no. 1, 1. ↑1

[Sta13] Richard P Stanley, Algebraic Combinatorics, Springer 20 (2013), 22. ↑4
[Sta80] Richard P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM

Journal on Algebraic Discrete Methods 1 (1980), no. 2, 168–184, available at https://doi.
org/10.1137/0601021. ↑4

[Sta83] Richard P Stanley, Combinatorial applications of the hard Lefschetz theorem, Proceedings of
the international congress of mathematicians, 1983, pp. 2. ↑4

Department of Mathematics, Brown University, Providence, RI 02906
Email address: shiyue_li@brown.edu

https://doi.org/10.1137/0601021
https://doi.org/10.1137/0601021
shiyue_li@brown.edu

	1. Introduction
	Acknowledgement
	2. Proof of the main theorem
	References

